If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-4y-98=0
a = 1; b = -4; c = -98;
Δ = b2-4ac
Δ = -42-4·1·(-98)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{102}}{2*1}=\frac{4-2\sqrt{102}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{102}}{2*1}=\frac{4+2\sqrt{102}}{2} $
| x=11+0.1 | | b=-4.8 | | x-20+x-20=90 | | X+0.7x=100 | | 4a=-7.2 | | x^2+144=256 | | 140x=300 | | 12+(0.15x)=10+0.25 | | k-7.2=5.4 | | x^2+12^2=16^2 | | 34-2x=-34 | | x/6-4=96 | | 7x-1x= | | -6(2-4n)=-156 | | -5(21+4y=205 | | 2d=62 | | 5k+12=90 | | 75.4=6.28*r | | 12x+3.5=51.5 | | 16=-16-8u | | -6(r+2)=42 | | 15y-4=5y+56 | | 20x+1+11x+28=180 | | 5(-4k-6)=-90 | | y+141/2=16 | | 7(8x+5)-35=4(1+14x)-4 | | -10=t+34 | | 14x-9-3x=24 | | 2.25+14p=1.50+20p | | 2(i-4)=35 | | 5p-4=-8+4p | | 13x^2+2x-8=0 |